Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA.
نویسندگان
چکیده
Combined automated NOE assignment and structure determination module (CANDID) is a new software for efficient NMR structure determination of proteins by automated assignment of the NOESY spectra. CANDID uses an iterative approach with multiple cycles of NOE cross-peak assignment and protein structure calculation using the fast DYANA torsion angle dynamics algorithm, so that the result from each CANDID cycle consists of exhaustive, possibly ambiguous NOE cross-peak assignments in all available spectra and a three-dimensional protein structure represented by a bundle of conformers. The input for the first CANDID cycle consists of the amino acid sequence, the chemical shift list from the sequence-specific resonance assignment, and listings of the cross-peak positions and volumes in one or several two, three or four-dimensional NOESY spectra. The input for the second and subsequent CANDID cycles contains the three-dimensional protein structure from the previous cycle, in addition to the complete input used for the first cycle. CANDID includes two new elements that make it robust with respect to the presence of artifacts in the input data, i.e. network-anchoring and constraint-combination, which have a key role in de novo protein structure determinations for the successful generation of the correct polypeptide fold by the first CANDID cycle. Network-anchoring makes use of the fact that any network of correct NOE cross-peak assignments forms a self-consistent set; the initial, chemical shift-based assignments for each individual NOE cross-peak are therefore weighted by the extent to which they can be embedded into the network formed by all other NOE cross-peak assignments. Constraint-combination reduces the deleterious impact of artifact NOE upper distance constraints in the input for a protein structure calculation by combining the assignments for two or several peaks into a single upper limit distance constraint, which lowers the probability that the presence of an artifact peak will influence the outcome of the structure calculation. CANDID test calculations were performed with NMR data sets of four proteins for which high-quality structures had previously been solved by interactive protocols, and they yielded comparable results to these reference structure determinations with regard to both the residual constraint violations, and the precision and accuracy of the atomic coordinates. The CANDID approach has further been validated by de novo NMR structure determinations of four additional proteins. The experience gained in these calculations shows that once nearly complete sequence-specific resonance assignments are available, the automated CANDID approach results in greatly enhanced efficiency of the NOESY spectral analysis. The fact that the correct fold is obtained in cycle 1 of a de novo structure calculation is the single most important advance achieved with CANDID, when compared with previously proposed automated NOESY assignment methods that do not use network-anchoring and constraint-combination.
منابع مشابه
PSEUDYANA for NMR structure calculation of paramagnetic metalloproteins using torsion angle molecular dynamics.
The program DYANA, for calculation of solution structures of biomolecules with an algorithm based on simulated annealing by torsion angle dynamics, has been supplemented with a new routine, PSEUDYANA, that enables efficient use of pseudocontact shifts as additional constraints in structure calculations of paramagnetic metalloproteins. PSEUDYANA can determine the location of the metal ion inside...
متن کاملSANE (Structure Assisted NOE Evaluation): an automated model-based approach for NOE assignment.
A reliable automated approach for assignment of NOESY spectra would allow more rapid determination of protein structures by NMR. In this paper we describe a semi-automated procedure for complete NOESY assignment (SANE, Structure Assisted NOE Evaluation), coupled to an iterative procedure for NMR structure determination where the user is directly involved. Our method is similar to ARIA [Nilges e...
متن کاملTorsion angle dynamics for NMR structure calculation with the new program DYANA.
The new program DYANA (DYnamics Algorithm for Nmr Applications) for efficient calculation of three-dimensional protein and nucleic acid structures from distance constraints and torsion angle constraints collected by nuclear magnetic resonance (NMR) experiments performs simulated annealing by molecular dynamics in torsion angle space and uses a fast recursive algorithm to integrate the equations...
متن کاملAutomated amino acid side-chain NMR assignment of proteins using (13)C- and (15)N-resolved 3D [ (1)H, (1)H]-NOESY.
ASCAN is a new algorithm for automatic sequence-specific NMR assignment of amino acid side-chains in proteins, which uses as input the primary structure of the protein, chemical shift lists of (1)H(N), (15)N, (13)C(alpha), (13)C(beta) and possibly (1)H(alpha) from the previous polypeptide backbone assignment, and one or several 3D (13)C- or (15)N-resolved [(1)H,(1)H]-NOESY spectra. ASCAN has al...
متن کاملAutomated protein structure determination from NMR spectra.
Fully automated structure determination of proteins in solution (FLYA) yields, without human intervention, three-dimensional protein structures starting from a set of multidimensional NMR spectra. Integrating existing and new software, automated peak picking over all spectra is followed by peak list filtering, the generation of an ensemble of initial chemical shift assignments, the determinatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of molecular biology
دوره 319 1 شماره
صفحات -
تاریخ انتشار 2002